Neptune's capture of its moon Triton in a binary–planet gravitational encounter (2025)

References

  1. McCord, T. B. Dynamical evolution of the Neptunian system. Astron. J. 71, 585–590 (1966)

    Article ADS Google Scholar

  2. McKinnon, W. B. On the origin of Triton and Pluto. Nature 311, 355–358 (1984)

    Article ADS CAS PubMed Central Google Scholar

  3. McKinnon, W. B., Lunine, J. I. & Banfield, D. Neptune and Triton (ed. Cruikshank, D. P.) 807–877 (Univ. Arizona Press, Tucson, 1995)

    Google Scholar

  4. Pollack, J. B., Burns, J. A. & Tauber, M. E. Gas drag in primordial circumplanetary envelopes—A mechanism for satellite capture. Icarus 37, 587–611 (1979)

    Article ADS Google Scholar

  5. McKinnon, W. B. & Leith, A. C. Gas drag and the orbital evolution of a captured Triton. Icarus 118, 392–413 (1995)

    Article ADS Google Scholar

  6. Goldreich, P., Murray, N., Longaretti, P. Y. & Banfield, D. Neptune's story. Science 245, 500–504 (1989)

    Article ADS CAS PubMed Google Scholar

  7. Heggie, D. C. Binary evolution in stellar dynamics. Mon. Not. R. Astron. Soc. 173, 729–787 (1975)

    Article ADS Google Scholar

  8. Hills, J. G. Computer simulations of encounters between massive black holes and binaries. Astron. J. 102, 704–715 (1991)

    Article ADS Google Scholar

  9. Funato, Y., Makino, J., Hut, P., Kokubo, E. & Kinoshita, D. The formation of Kuiper-belt binaries through exchange reactions. Nature 427, 518–520 (2004)

    Article ADS CAS PubMed Google Scholar

  10. Morbidelli, A. & Levison, H. F. Scenarios for the origin of the orbits of the trans-neptunian objects 2000 CR105 and 2003 VB12 (Sedna). Astron. J. 128, 2564–2576 (2004)

    Article ADS Google Scholar

  11. Tsui, K. H. Satellite capture in a four-body system. Planet. Space Sci. 50, 269–276 (2002)

    Article ADS Google Scholar

  12. Durda, D. D. et al. The formation of asteroid satellites in large impacts: results from numerical simulations. Icarus 170, 243–257 (2004)

    Article ADS Google Scholar

  13. Weidenschilling, S. J. On the origin of binary transneptunian objects. Icarus 160, 212–215 (2002)

    Article ADS Google Scholar

  14. Goldreich, P., Lithwick, Y. & Sari, R. Formation of Kuiper-belt binaries by dynamical friction and three-body encounters. Nature 420, 643–646 (2002)

    Article ADS CAS PubMed Google Scholar

  15. Astakhov, S. A., Lee, E. A. & Farrelly, D. Formation of Kuiper-belt binaries through multiple chaotic scattering encounters with low-mass intrudes. Mon. Not. R. Astron. Soc. 360, 401–415 (2005)

    Article ADS Google Scholar

  16. Canup, R. M. A giant impact origin of Pluto-Charon. Science 307, 546–550 (2005)

    Article ADS CAS PubMed Google Scholar

  17. Margot, J. L. et al. Binary asteroids in the near-earth object population. Science 296, 1445–1448 (2002)

    Article ADS CAS PubMed Google Scholar

  18. Merline, W. J. et al. Asteroids III (eds Bottke, W. F. Jr, Cellino, A., Paolicchi, P. & Binzel, R. P.) 289–312 (Univ. Arizona Press, Tucson, 2002)

    Google Scholar

  19. Stephens, D. C. & Noll, K. S. Detection of six trans-neptunian binaries with NICMOS: A high fraction of binaries in the cold classical disk. Astron. J. 131, 1142–1148 (2006)

    Article ADS Google Scholar

  20. Hamilton, D. P. & Burns, J. A. Orbital stability zones about asteroids. II—The destabilizing effects of eccentric orbits and of solar radiation. Icarus 96, 43–64 (1992)

    Article ADS Google Scholar

  21. Asphaug, E. & Benz, W. Size density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidal breakup. Icarus 121, 225–248 (1996)

    Article ADS Google Scholar

  22. Ćuk, M. & Gladman, B. J. Constraints on the orbital evolution of Triton. Astrophys. J. 626, L113–L116 (2005)

    Article ADS Google Scholar

  23. Hamilton, D. P., Zhang, K. & Agnor, C. B. Constraints on Triton's orbital evolution. AAS/Div. Dyn. Astron. Meet. 36(2), 11.04 (2005)

  24. Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966)

    Article ADS Google Scholar

  25. Benner, L. A. M. & McKinnon, W. B. Orbital behaviour of captured satellites: The effect of solar gravity on Triton's postcapture orbit. Icarus 114, 1–20 (1995)

    Article ADS Google Scholar

  26. Lissauer, J. J., Pollack, J. B., Wetherill, G. W. & Stevenson, D. J. Neptune and Triton (ed. Cruikshank, D. P.) 37–108 (Univ. Arizona Press, Tucson, 1995)

    Google Scholar

  27. Hahn, J. M. & Malhotra, R. Orbital evolution of planets embedded in a planetesimal disk. Astron. J. 117, 3041–3053 (1999)

    Article ADS Google Scholar

  28. Gomes, R. S., Morbidelli, A. & Levison, H. F. Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU? Icarus 170, 492–507 (2004)

    Article ADS Google Scholar

  29. Ward, W. R., Agnor, C. B. & Tanaka, H. in Astrophysical Ages and Time Scales (eds von Hippel, T., Simpson, C. & Manset, N.) 111–120 (ASP Conf. Ser. 245, Astronomical Society of the Pacific, San Francisco, 2001)

    Google Scholar

  30. Goldreich, P., Lithwick, Y. & Sari, R. Planet formation by coagulation: a focus on Uranus and Neptune. Annu. Rev. Astron. Astrophys. 42, 549–601 (2004)

    Article ADS CAS Google Scholar

Download references

Neptune's capture of its moon Triton in a binary–planet gravitational encounter (2025)

References

Latest Posts
Recommended Articles
Article information

Author: Rubie Ullrich

Last Updated:

Views: 5249

Rating: 4.1 / 5 (52 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Rubie Ullrich

Birthday: 1998-02-02

Address: 743 Stoltenberg Center, Genovevaville, NJ 59925-3119

Phone: +2202978377583

Job: Administration Engineer

Hobby: Surfing, Sailing, Listening to music, Web surfing, Kitesurfing, Geocaching, Backpacking

Introduction: My name is Rubie Ullrich, I am a enthusiastic, perfect, tender, vivacious, talented, famous, delightful person who loves writing and wants to share my knowledge and understanding with you.